

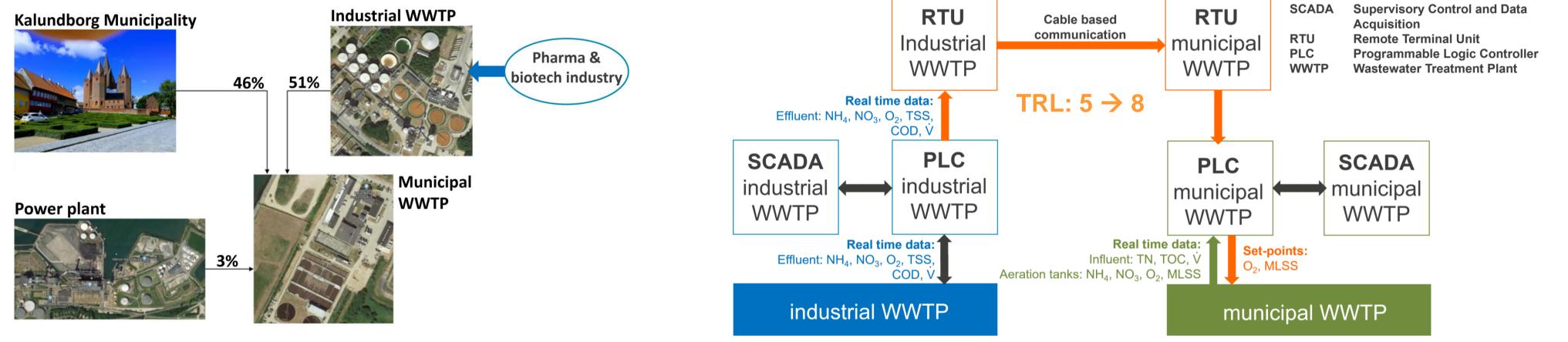
TRANSITION FROM LINEAR TO CIRCULAR ECONOMY

in the nexus of the water sector & intensive water consuming industries.

CS9 – Joint control system for two WWTPs

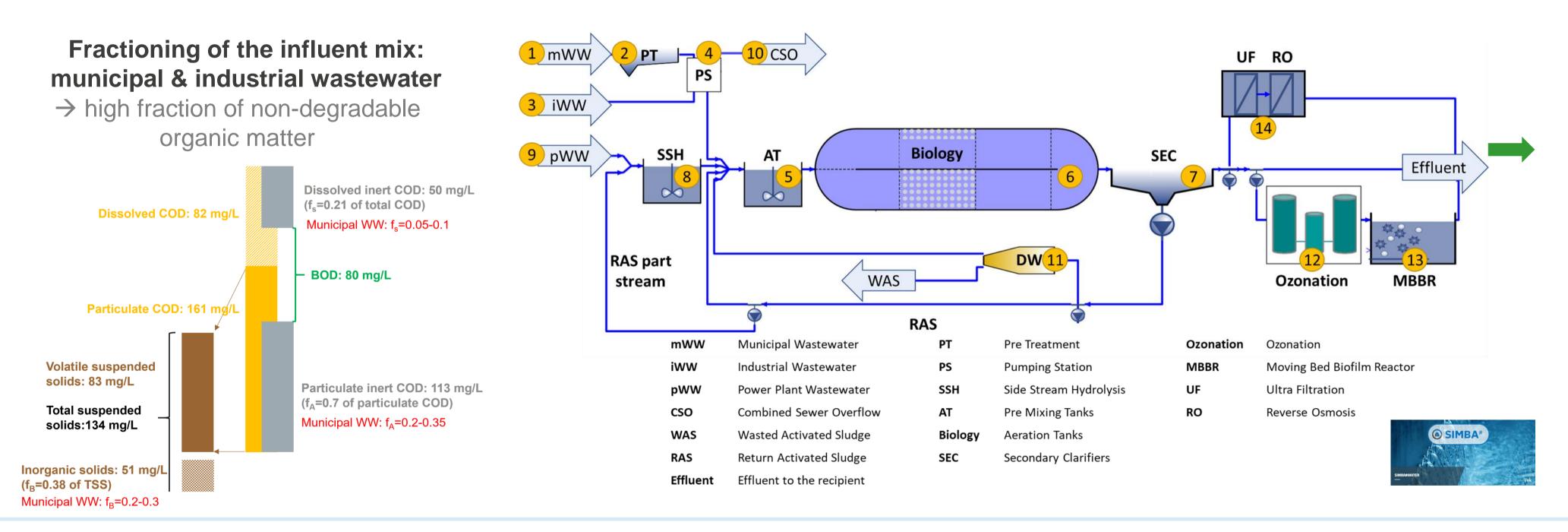
Objectives:

Reduce energy consumption


 \rightarrow Model-based predictive controlled nitrogen elimination (Air supplied as low as possible via predicting NH₄, NO₃, TN and COD loads to the municipal WWTP)

Reduce chemicals consumption for phosphorus elimination

 \rightarrow Implementation of enhanced biological phosphorus removal


Optional: Reduce direct discharges of untreated wastewater to recipient \rightarrow iWWTP = hydraulic buffer during high loading situations

	RTU Industrial WWTP	Cable based communication	RTU municipal WWTP	SCADA RTU PLC WWTP	Supervisory Control and Data Acquisition Remote Terminal Unit Programmable Logic Controller Wastewater Treatment Plant
--	----------------------------------	------------------------------	---------------------------------	-----------------------------	--

Dynamic model of WWTP treats wastewater with challenging composition

Results (post calibration): dynamic model predicts the model outputs adequately with an overall efficiency of 74%

	COD [mg/L]	TSS [mg/L]	TN [mg/L]	NHx-N [mg/L]	NOx-N [mg/L]	RAS [g/L]	
Lab	67.15	10.15	6.32	0.37	1.44	22.83	
Sim	69.82	4.61	5.42	0.32	1.30	21.23	
Deviation	3.2%	55%	14%	13.5%	9.7%	7%	
Parameter	R ²	NSE	L	a _i			
COD	0.92	0.91	0.91	0.26	> 0.75		
TSS	0.74	-0.18	0.31	0.09	< 0.75 >	0.25	
TN	0.81	0.68	0.72	0.20	< 0.25		
NHx-N	0.64	0.58	0.66	0.19		1	
NOx-N	0.11	-1.44	0.09	0.03	E	E _i = 0.74	
RAS	0.95	0.83	0.84	0.24	<mark>overall m</mark>	overall model efficiency	

Lessons learned and what is crucial in terms of replication of the technology?

 \rightarrow Models are only as good as the quality of the data they rely on. \rightarrow Pre-processing and verification of data is crucial. \rightarrow Due to Covid-19, a visit of the WWTP was not possible at the beginning of the project and therefore, for the modelling process many meetings were required to verify the information, data and assumptions for the operation of the real WWTPs.

 \rightarrow Due to manual TSS & O₂ control on site, assumptions had to be made to model sludge and aeration control

Follow us on :

To discover our business model innovation journey

R ^G	ULTIMATE-Water-Smart-Industrial-Symbiosis	C

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 869318