

WATER SMART INDUSTRIAL SYMBIOSIS

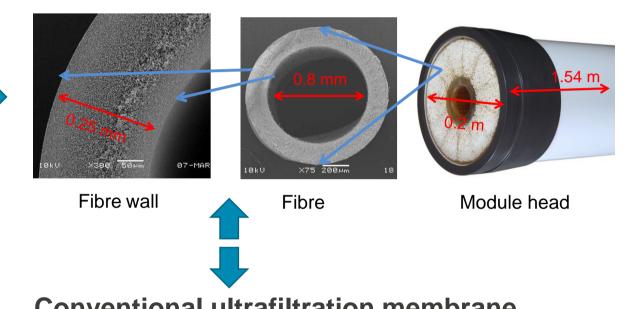
TRANSITION FROM LINEAR TO CIRCULAR ECONOMY

in the nexus of the water sector & intensive water consuming industries.

CS9 - Production of fit-for-purpose water

Objectives:

- Treatment of wastewater with a high fraction of non-degradable organic matter with a high fouling potential
- Novel ultra-tight ultrafiltration (UF) membrane shall prevent the reverse osmosis (RO) membrane better from fouling than a conventional UF
- → Lower demand for chemical enhanced cleanings & cleaning in place of RO
- Production of fit-for-purpose water for cooling and/or as feed water for boilers



Novel tight ultrafiltration membrane

Molecular weight cut offs: 1 and 4 kDa TRL: 9 and 5 → 7

Conventional ultrafiltration membrane
Molecular weight cut off: 150 kDa

First results – secondary effluent of mWWTP as influent to pilot

- → For this type of wastewater: management of UF fouling and pre-filtration is challenging → many downtimes
- → The novel membrane with 4 kDa performs better with less downtimes than the conventional UF with 150 kDa.
- → Currently, a nanofiltration membrane with only 1 kDa is tested (data not shown), that requires more energy than the 4kDa-membrane, but might be even better for the effective protection of the RO from fouling.

Fit-for-purpose water qualities

			•			
Parameter	Unit	Thresholds for cooling water	UF B (4 kDa) permeate		RO B permeate	
Hardness tot.	°dH	<20	10-36	n=2	<0.1-0.3	n=4
EI. conductivity	μS/cm	<3000	5200- 5500	n=3	32-150	n=6
рН	-	7-8.5	8.1-8.5	n=2	6-7.4	n=6
Chloride	mg/L	<250	1100	n=1	9.9-40	n=5
Sulphate	mg/L	<600	390-570	n=5	0.3-5	n=4
TDS	mg/L	<1800	3400	n=1	100	n=1
TSS	mg/L	<5	<0.5	n=1	<0.5	n=1

RO combined with tighter UF membrane shows a longer operation time than RO with conventional UF membrane as pre-treatment

Parameter	Unit	RO A with UF (150 kDa) as pre-treatment	RO B with novel UF (4 kDa) as pre-treatment	
Membrane area	m²	8		
Flux	L/(m ² *h)	22.3		
Recovery	%	40		
Recirculation flow	L/h	1200		
Membrane replacement	per 10 months	3		
Operation time %		28	55	

Lessons learned from the construction and start-up

- → Unexpected high demand for maintenance at the beginning with 16-20 h/week
- → "Simple" technologies such as pre-filters may cause headaches.
- → Comprehensive analyses are crucial to accelerate the start-up.
- → Still low UF performance hinders continuous operation of RO.

What is crucial in terms of replication of the technology?

- → Depending on the chemical composition of the feed stream, a pre-treatment might be beneficial.
- → Therefore, a comprehensive characterisation of the feed stream will reveal the requirements for a suitable treatment train.
- → Especially for wastewaters with high fouling potential, pre-tests are required and on site piloting is recommended.

Follow us on:

To discover our business model innovation journey

www.ultimatewater.eu

zenodo.org/communities/ultimate_water

ULTIMATE-Water-Smart-Industrial-Symbiosis

Q

