

Anaerobic treatment of weak effluents at low temperatures

Professor Ana Soares

www.cranfield.ac.uk

*Tchobanoglous, G., Burton, L.F. and Stensel, H.D. (2003) Metcalf & Eddy, Inc., McGraw-Hill Book Co, International edition. *Young, D.F. and Koopman, B. (1991) Journal of Environmental Engineering-Asce 117(3), 300-307

Power consumption in wastewater treatment plants

Anaerobic digestion vs anaerobic treatment

Upflow anaerobic sludge blanket reactor (UASB)

- Maintains a high concentration of biomass through formation of highly settleable microbial aggregates
- The sewage flows upwards through a layer of sludge
- Separation between gas-solid-liquid takes place at the top of the reactor phase
- Recirculation enables solids to be recirculated to the sludge zone
- Widely used for treatment of municipal sewage in warm climates
- Number of studies at pilot-scale in temperate climates

Standard UASB performance in temperate climates

Number of studies (temperatures: 8-22°C)

Raw wastewater -14

Settled wastewater - 4

Settled WW (eff. averages): TSS_{eff}.: 37 mg/L (71% removal) COD_{eff}: 139 mg/L (54% removal) Desired performance: BOD_{eff}: 25 mg/L COD_{eff}: 125 mg/L (>80% removal) TSS_{eff}: 35 mg/L (>70% removal)

		Granular-OASD	FIOLCUIEIII-OASD
Hydrolysis rate	%	23.0 ± 5.6	23.1 ± 7.4
Acidigenisis rate	%	37.9 ± 4.9	54.1 ± 5.5
Methanogenesis rate	%	43.1 ± 4.0	48.8±5.5

Comparison granular and flocculent UASB reactors for wastewater treatment in temperate climates (10C)

	Temperature	°C	Granular-UASB 10.2 \pm 1.5	Flocculent -UASE 10.2 ± 1.5
TSS	Influent UASB effluent	$mg L^{-1}$ $mg L^{-1}$	113 ± 23 69 ± 11	113 ± 23 75 $\pm 9^{\circ}$
	Removal	%	42 ± 13	39 ± 14°
CODt	Influent UASB effluent	mg L ⁻¹ mg L ⁻¹	213 ± 62 129 ± 19	213 ± 62 140 ± 25°
	Removal	%	41 ± 14	$36 \pm 16^{\circ}$
SCOD	Influent UASB effluent	$mg L^{-1}$ $mg L^{-1}$	72 ± 16 64 ± 13	72 ± 16 60 ± 13
	Removal	%	18 ± 12	24 ± 14
BOD ₅	Influent UASB effluent	mg L ⁻¹ mg L ⁻¹	107 ± 22 84 ± 8	107 ± 22 88 ± 10
	Removal	%	26 ± 17	19 ± 11

Granular Flocculent

Wang KW, Soares A, Jefferson B, McAdam E. 2019. Comparable membrane permeability can be achieved in granular and flocculent anaerobic membrane bioreactor for sewage treatment through better sludge blanket control. Journal of Water Process. 28:181-189.

UASB configurations that can enhance solids retention

- 1. UASB with (2-3) three solid phase separators
- 2. UASB with increased diameter
- 3. UASB with support media (expanded bed biofilm reactor)
- 4. Package UASB coupled with lamella settler
- 5. Two stage UASB
- 6. Y shaped UASB
- 7. UASB combined with membrane filtration
- 8. UASB combined with microscreens/microstrainers
- 9. UASB combined with granular media filter
- 10. UASB combined with rapid filter/slow sand filter
- 11. UASB coupled with sponge media on top of the digester compartment
- 12. UASB coupled with sponge media filtration

Solids capture in UASB

Ribera-Pi J, Campitelli A, Badia-Fabregat M, Jubany I, Martínez-Lladó X, McAdam E, Jefferson B, Soares A. 2020. Hydrolysis in upflow anaerobic sludge blanket reactors treating municipal wastewater under psychrophilic conditions: the importance of reactor configuration. Frontiers in Bioengineering and Biotechnology

UASB + MBR (anMBR) performance

UASB	Methane yield (m³ CH₄/ kg COD _{removed})	
7°C	0.13	
20°C	0.19	
anMBR		
7°C	0.19	
20°C	0.28	

Municipal wastewater 8-12°C HRT 8 h upflow velocity: 0.4 m/h

Wang KW, Soares A, Jefferson B, McAdam E. 2019. Comparable membrane permeability can be achieved in granular and flocculent anaerobic membrane bioreactor for sewage treatment through better sludge blanket control. Journal of Water Process. 28:181-189.

Ribera-Pi J, Campitelli A, Badia-Fabregat M, Jubany I, Martínez-Lladó X, McAdam E, Jefferson B, Soares A. 2020. Hydrolysis in upflow anaerobic sludge blanket reactors treating municipal wastewater under psychrophilic conditions: the importance of reactor configuration. Frontiers in Bioengineering and Biotechnology.

H2020 NEXT-GEN

- NextGen demonstrates innovative technological, business and governance solutions for water in the circular economy in ten high-profile, large-scale, demonstration cases across Europe, and we will develop the necessary approaches, tools and partnerships, to transfer and upscale.
- The resources include:

The consortium has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 776541.

Relevant data

Waste water plant serving the town of Redditch (Birmingham, UK): 92.000 PE

Relevant sectors

Agriculture

Lead partners

Domestic sector

Energy sector

Spernal WWTP serves as Severn Trent Water's "Resource Recovery and Innovation Centre" where emerging technologies compatible with a low energy, circular economy approach will be evaluated.

A multi-stream test bed facility was constructed in 2019 and this will incorporate an anaerobic membrane bioreactor (AnMBR) to be commissioned in Summer 2020. The AnMBR will also comprise a membrane degassing unit to recover dissolved methane and ion exchange processes to recover nitrogen and phosphorus from the effluent.

AnMBR combines several benefits such as:

- no aeration energy for removal of Chemical and Biological Oxygen Demand (COD/BOD)
- low sludge production and hence reduced downstream sludge treatment costs
- biogas production (production of electricity/heat
- pathogen and solids free effluent which can be re-used in a number of applications (e.g.: farming and industrial use).

Building in Spernal

- Construction and commissioning of resource recovery innovation center completed in October 2019 – drone footage on right
- AnMBR to be commissioned in Summer 2020

 fabrication of the UASB reactors (Waterleau) shown on left

Video of R2IC in file sent via

https://youtu.be/BeETnMSnjss

NEXT-GEN Demonstration case Spernal WWTP

Pilot data on the UASB with the same

JUL-SEPT 2020		Pilot hall sewage characterisation		Removal rates (%)	OCT 2	2020 –	Pilot hall sewage characterisation		Removal rates (%)
(T=1	8°C)	Influent	R1 UASB effluent	R1 UASB	(T=13°C)		Influent	R1 UASB effluent	R1 UASB
COD	mg L ⁻¹	153	56	63	COD	mg L ⁻¹	181	100	45
sCOD	mg L ⁻¹	36	29	19	sCOD	mg L ⁻¹	44	39	11
BOD ₅	mg L ⁻¹	65	38	42	BOD ₅	mg L ⁻¹	71	44	38
TSS	mg L ⁻¹	117	37	68	TSS	mg L ⁻¹	111	41	63
VSS	mg L ⁻¹	108	31	71	VSS	mg L ⁻¹	96	37	61
SO ₄	mg L ⁻¹	62	40	35	SO ₄	mg L ⁻¹	68	43	37

Gas sensors and dissolved methane probe to assist on the measurement of energy production in the AnMBR

OCT 2020 – ongoing	R1 UASB		
Biogas production	L d-1	0.6	
Dissolved CH ₄ /total CH ₄	%	93.6	
Methane yield	L CH ₄ /g COD	0.13	

In the process, water passes through the outside (shell side) of the hollow fibres while a sweep gas (or vacuum) is applied to the inside (lumen side) of the fibres. Because the membrane is hydrophobic it allows direct contact between gas and water without dispersion

Applying a higher pressure to the water stream relative to the gas stream creates the driving force for dissolved gas in the water to pass through the membrane pores.

AnMBR effluent (without dissolved CH₄)

- Technology provider 3M (Membrana) ٠
- The methane will be sent to the gas bag ٠

- 360 m3/day WWTP
- anMBR energy consumption 0.25 kWh/m³, production 0.2-0.5 kWh/m³
- · Heat recovery is of high relevance
- The anaerobic digestion of primary sludge balances energy and ensures solids management in the anMBR

kWh/year

Wang KW, Soares A, Jefferson B, McAdam E. 2019. Comparable membrane permeability can be achieved in granular and flocculent anaerobic membrane bioreactor for sewage treatment through better sludge blanket control. Journal of Water Process. 28:181-189.

Ribera-Pi J, Campitelli A, Badia-Fabregat M, Jubany I, Martínez-Lladó X, McAdam E, Jefferson B, Soares A. 2020. Hydrolysis in upflow anaerobic sludge blanket reactors treating municipal wastewater under psychrophilic conditions: the importance of reactor configuration. Frontiers in Bioengineering and Biotechnology.

