How to avoid corrosion and scaling in ATES systems in Germany?

<u>Hilke Würdemann</u>, Christoph Otten, Beate Dassler, Tobias Lienen, Anne Kleyböcker, Anja Narr, Anke Westphal, Stephanie Lerm and Sebastian Teitz

Hochschule Merseburg

Microorganisms (MO) vs. technical applications

- Development of biofilms —> Clogging of pipes, filters, heat exchangers
- > Mineral precipitation \longrightarrow Loss of well injectivity
- Mineral dissolution

gefördert vom

- Degradation of scaling inhibitors
- \longrightarrow Increase in porosity and permeability
 - \longrightarrow Less environmental impact

Molecular biological analysis: characterization of the microbial community composition and quantification

Genetic Fingerprinting

Quantitative real-time PCR

- Relative quantification related to the total community
- Absolute quantification of species or groups

Microbiom analysis of Fluids and Biofilms

^{it} aufgrund eines Beschlusses des dt. Bundestags

H0ME

HOCHSCHULE

MERSEBURG

University of

Applied Sciences

Geothermal Heat Store Neubrandenburg

Schematic illustration

Lerm et al. 2014

2007-2011	T [°C]	рН [-]	Na ⁺ [g l ^{⁻1}]	Cl ⁻ [g l ⁻¹]	NO ₃ ⁻ [mg l ⁻¹]	SO ₄ ²⁻ [mg l ⁻¹]	Fe ²⁺ [mg l ⁻¹]
Cold well (CW)	46.7	6.1	47.0	78.5	b.d.l.	912	16.9
Warm well (WW)	73.2	6.0	47.2	78.5	b.d.l.	983	14.7

Corrosion and Scaling in the "cold well"

Microorganismen involved?

Hilke Würdemann Hochschule Merseburg

Effects of plant downtime

7

	Causes	Date	Duration days]
	Restart after pumping test	Apr 11	6
<	Technical defect during charge mode	Sept 11	28
	Change of operation mode	Mar 12	7
	Technical defect during charge mode	Aug 12	19
	Change of operation mode	May 13	10
	Technical defect during charge mode	Jun 13	32

Westphal et al. 2016

Geothermal fluid and mineral properties – during restart –

Measurements after restart after produced volume [m ³]	SO4 ²⁻ [mg l ⁻¹]	Fe ²⁺ [mg l ⁻¹]	H ₂ S [µg l ⁻¹]	DOC [mgC l ⁻¹]	Particle load [g m ⁻³]	δ ³⁴ S _{SO4} (‰CDT)
5-30	1600 🕇 🕇	22	375 🕇	98.8	50,000	25
30-490	980	17	180	2.6	0.1	

†Increased concentrations after downtime

Westphal et al. 2016

Sulfate reducing and fermentative bacteria dominant members of the microbial community

- Sulfate reducing bacteria (SRB)
- Fermentative bacteria
- Sulfur oxidizing bacteria (SOB)
 - → Oxygen ingress
 - \rightarrow Sulfur cycling
 - \rightarrow Increased corrosion rates
 - --- Short stop of operation (< 3h)
- Westphal et al. 2016
- Long stop of operation (19h)

5

0

15

30

0

15

390

15

15 20 35 50 65 80 105 490 Produced volume [m³] after re-start

Geothermal Heat Store Neubrandenburg

2007-2011	T [°C]	рН [-]	Na ⁺ [g l ^{⁻1}]	CL ⁻ [g l ⁻¹]	NO ₃ ⁻ [mg l ⁻¹]	SO4 ²⁻ [mg l ⁻¹]	Fe ²⁺ [mg l ⁻¹]
Cold well (CW)	46.7	6.1	47.0	78.5	b.d.l.	912	16.9
Warm well (WW)	73.2	6.0	47.2	78.5	b.d.l.	983	14.7

Bypass system to study temperature effects on corrosion rate

Kleyböcker et al. 2017

Corrosion over Exposure Time (Flow Time)

Bundesministeriun

für Wirtschaft aufgrund eines Beschlusses des dt. Bundestags

H0ME

HOCHSCHULE MERSEBURG^{FH}

University of Applied Sciences

Coupons exposed to geothermal fluid (59 days) in the bypass system: - Effect of heat shock -

Vessel A: Coupons: 2 Temperature: 40 °C

Vessel B: Coupons: 2 Temperature: 40 °C & every 14 days: 78 °C (6 h)

Kleyböcker et al. 2017

Temperature experiment (59 days): Shock temperature every 14 days

Vessel 1: T= 40 °C

Vessel 2: T= 40 °C & 78 °C (6 h)

→ Thinner biofilm layer after shock temperature

Kleyböcker et al. 2017

Summary - Heat Store Neubrandenburg

- Growth of SOB indicates oxygen ingress during the downtime phase. The fast decline of SOB after plant restart indicates the exclusive affection of the well.
- Interaction of SRB and SOB might have enhanced the corrosion processes occurring in the geothermal plant.
- Heat shock is a promising procedure to reduce biofilms and corrosion.

Geothermal Plant Unterhaching Use of a scaling inhibitor to avoid scaling

Otten et al. 2021

Quelle: Bundesverband Geothermie

Increase of *Bacteria* due to inhibitor dosage in fluid samples from different sampling sites at the geothermal plant Unterhaching over a monitoring since 700 days of inhibitor dosage.

* below the sample specific detection limit

Otten et al. 2021

Increase of bacteria after heat extraction and inhibitor dosage (qPCR of Bacteria, Sulfate-reducing bacteria and Archea)

Quantification with qPCR with primers for the 16S rRNA gene (*Bacteria* and methanogenic archaea) and the *dsrA*-gene for sulfate-reducing bacteria.

* below the sample specific detection limit

Otten et al. 2021

Change of the microbial community composition (Microbiome analysis)

Microbiome analysis

Characterization of the bacterial biocenosis of fluid samples from the plant exit at the geothermal plant Unterhaching since 700 days inhibitor dosage.

Blue: fermentative bacteria, Red sulfate-reducing bacteria

Otten et al. 2021

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

Many thanks for your attention

Literature

- Lerm, S., Westphal, A., Miethling-Graff, R., Alawi, M., Seibt, A., Wolfgramm, M., Würdemann, H. (2013). Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. Extremophiles. Volume 17, Issue 2, Page 311-327.
- Westphal et al. (2016). Effects of plant downtime on the microbial community composition in the highly saline brine of a geothermal plant in the North German Basin. Appl Microbiol Biotechnol 100(7):3277-3290.
- Würdemann, H., Westphal, A., Kleyböcker, A., Miethling-Graff, R., Teitz, S., Kasina, M., · Andrea Seibt, A., Wolfgramm, M., Eichinger, F., Lerm, S. (2016). Störungen des Betriebs geothermischer Anlagen durch mikrobielle Stoffwechselprozesse und Erfolg von Gegenmaßnahmen. Grundwasser 21 (2): 93-106. dOI 10.1007/s00767-016-0324-1.
- Kleyböcker, A., Lienen, T., Kasina, M., Westphal, A., Teitz, S., Eichinger, F., Seibt, A., Wolfgramm, M., Würdemann, H. (2017). Effects of heat shocks on biofilm formation and the influence on corrosion and scaling in a geothermal plant in the North German Basin Energy Procedia, Energy Procedia 125 (2017) 268–272. 10.1016/j.egypro.2017.08.173.
- Otten *et al.* (2021). Interactions between the calcium scaling inhibitor NC47.1 B, geothermal fluids, and microorganisms – Results of in situ monitoring in the Bavarian Molasse Basin (Germany) and accompanying laboratory experiments. Adv. Geoscience in print.

neu sv

GEOCHEMISCHE

HOME

