

WATER SMART INDUSTRIAL SYMBIOSIS

CS9 Kalundborg

Ultra-tight UF in fit-for-purpose water treatment systems in the biochemical industry

Leo Vredenbregt

PENTAIR X-FLOW

CTG Membranes meeting: 25 November 2020

Kalundborg Symbiosis since 1972:

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 869318

Kalundborg Symbiosis since 1972:

WATER - Task 1.2.7

Novel membrane treatment for biotech or biotech & municipal WWTP effluent for water reuse

OBJECTIVE:

Production of fit-for-purpose water via:

- → novel (ultra tight) ultra-filtration membrane combined with
- → pre-treatment for wastewater with high-nondegradable organic matter

- Hollow fibers: 0.8 mm internal diameter
- Filtration: inside out
- Material: polyvinylpyrrolidone / polyethersulfone
- Module: 0.22 / 1.5 m (diameter / length), 64 / 75 m²
- > 99.99% virus removal (NSF61 & NSF41)

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 869318

Skid with modules

The Filtration Spectrum

Novel (ultra tight) UF membrane (~4 kDa)

Conventional UF (MWCO 150 kDa)

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 869318

Li, S. (2011). A New Concept of Ultrafiltration Fouling Control: Backwashing with Low Ionic Strength Water. Delft, The Netherlands, Technische Universiteit Delft.

Schematic setup pilot plants

Li, S. (2011). A New Concept of Ultrafiltration Fouling Control: Backwashing with Low lonic Strength Water. Delft, The Netherlands, Technische Universiteit Delft.

Membrane-section

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 869318

Pilot B from previous EU-h2020 project will be refurbished

Phot from EU-h2020 project AquaNES

Containerized (40 feet)

Remote controlled

Full-scale NF or UF module (40-75 m²)

Variable process settings

Simulation of one full-scale filtration stage

Feed: 0.5 - 6 m³/h

Panorama-tour: http://showcase24.eu/pano/bwb-tiefwerder.htm

KPI's proposed (for Task 1.2.7)

KPI proposed	Parameter to be determined								
Water yield & reduction of fresh water through reuse of treated wastewater	Inlet and outlet flowrate of the system Recoveries (UF, RO)								
Water quality	Removal of specific compounds. Physicochemical and microbiological parameters from inlet and outlet; emerging organic pollutant; nutrient removal (or recovery)								
Other parameters to be determined									
Energy consumption	Energy used for the treatment per m ³ obtained Energy used per kg of pollutant removal								
Reagents & materials required	Amounts of reagents used for treatment or materials (flocculant, etc.) per m ³ produced and kg of pollutant removed								
Wastes produced	Sludge generated (kg per m ³ produced) and brines (m ³ per m ³ produced)								

WATER - Task 1.2.7

Parameters to be determined in detail (to be discussed!)

- Physicochemical parameters (temperature, pH, conductivity, O₂, ORP, turbidity, suspended solids/ TDS, UV absorption (254nm), colour (436nm), DOC, TOC, COD, Fe, Mn, hardness, carbonate hardness, Ca, Mg, CO₂, HCO₃, acid capacity, base capacity, total alkalinity, Al, Ba, Cl, K, Na, SiO₂, Sr, F, B, SO₄ only a selection continuously!)
- Microbiological parameters (pathogenic bacteria, viruses and parasites (e.g. *E. Coli, Enterococcus,* somatic coliphages, *Clostridium perfringens* spores/spore-forming sulphate reducing bacteria)),
 Emerging organic pollutants (depending on existing pollutants)
- Nutrients (NH₄, NO₃, PO₄, TP, BOD₅)
- Performance parameter (flow, pressure, temperature, intervals backwash, chemical cleaning, CIP's)

Planning for testing water reuse (Task 1.2.7)

		2020						2021												2022											2023											2024				
		6	7	8	9 1	0 11	12	1	2	3	4	5	6	7	8	9	10 1	1 1	.2	1	2 3	34	15	i 6	57	8	9	10	11 :	12	1 2	2 3	4	l 5	6	7	8	9	10	11	12	1	2	3	4	5
Internal milestones: pilot plant		1	2	3	4 !	56	7	8	9	10	11	12	13	14	15	16	17 1	81	.9 2	20 2	1 22	2 23	3 24	25	5 26	27	28	29	30 3	31 3	32 33	34	35	36	37	38	39	40	41	42	43	44	45	46	47 4	48
UFs (novel & commercial), RO designed	X-Flow																																													
UF's & RO's constructed	X-Flow																																													
Commissioning pilots	X-Flow																																													
Transport, installation & commiss. on site	X-Flow																																													
Support pilot process operation	X-Flow																																													
Discussion & support: pilot plant design	all																																													
Preparation of periphery for plant imple- mentation (pipes, electricity, etc)	KAL																																													
Pilot plant implemented and operational	KAL																																													
Scenario I: UF&RO – pilot operation	KAL																																													
Scenario I (UF-RO) - evaluation	KWB																																													
Biofilter (BF): tendering for rental	KAL																																													
Preparation of periphery for plant imple- mentation for scenario II	KAL																																													
Scenario II: O3/BF-UF&RO – pilot operation	KAL																																													
Scenario II (O3-BF-UF-RO) - evaluation	KWB																																													
PAC unit tendering	Novo																																													
Preparation of periphery for plant imple- mentation for scenario III	KAL																																													
Scenario III: PAC - UF&RO – pilot operation	KAL																																													
Scenario III ([w/&w/o PAC]-UF-RO) - evaluation	KWB																																													
Comparison of Scenarios	KWB																																													

Summerizing some high lights

The project will deliver:

- Insight in the performance of the novel ultra-tight UF membrane (with challenging WWTP effluents)
- Insight in quality of produced water
- Effectiveness of novel UF in protecting the RO is compared with conventional UF
- KPI's will be available to assess the (economic) feasibility for the water treatment steps

